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Problem 1. A triomino is an equilateral triangle with side length 1 with three not necessarily
distinct integers ranging from 1 to 10, inclusive, with one on each side. Triominic is laying down
triominoes on a equilateral triangle shaped table with length 5, such that adjacent triominoes must
have the same label on the shared sides. Let S be the number of ways Triominic can completely
tile the table, given that he has a su�cient amount of each possible triomino. Find the number of
positive factors of S.
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Solution. Rather than labelling the sides of each triomino, we can instead label the edges of
length 1 within the larger triangle. Since there are a total of 45 edges and each edge has 10
possible labels, S = 1045 = 245 · 545. Thus, there are 46 · 46 = 2116 factors.

Problem 2. De�ne bac to be the largest integer less than or equal to a. It is given that⌊
100

∞∑
n=0

1

22n

⌋
= 82.

Let S be the sum of all distinct numbers that can be expressed as x1x2 where x1, x2 are distinct
numbers that can be expressed as 1

22i
for nonnegative integers i. Find b100Sc.

Solution. Let ai = 1

22i
and

∑∞
n=0 an = c. We see that c2 is a0(c) + a1(c) + a2(c) · · · . We can

rewrite this again to
∞∑
i=0

∞∑
j=0

aiaj

Since we only care about the terms where i > j, we can remove these terms. This is done by
�rst removing the i = j terms, then dividing the whole thing by two because there is symmetry
between i > j and i < j terms. Hence, the answer we are looking for is

1

2
(c2 −

∞∑
i=0

a2i )
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We can rewrite the inner summation.
∞∑
i=0

a2i =
∞∑
i=0

1

22i+1 =
∞∑
i=1

1

22i
=
∞∑
i=1

ai = c2 − a0

It is easy to see that a0 = 1
2 . Hence, our answer is

1

2
(c2 − c+ 1

2
)

Using our approximation of c = 0.82, we get

1

2
(0.6724− 0.82 + 0.5) = 0.5 · 0.3524 = 0.1762

Hence, our answer is b100 · 0.1762c = 17

Problem 3. 4ABC is an equilateral triangle with side length 1. Circles ω1, ω2, and ω3 have
centers A, B, and C , respectively, and each of them passes through the other two vertices of the
triangle.

Construct 4DEF such that ω1, ω2, and ω3 are internally tangent to it. Let P1P2P3P4P5P6

denote the hexagon formed by the points of tangency. If the area of equilateral triangle4P1P3P5

can be expressed as a
√
b+c
d , �nd 1000a+ 100b+ 10c+ d.

Solution. Let the points be labeled in the order as below and let O be the center of ABC .
Clearly AP3 = 1, AO =

√
3/3,∠P3AO = 120◦ so Law of Cosines on4AOP3 gives OP3 =√

12 + (
√
3/3)2 + 2 · 1 · (

√
3/3) · 1/2 =

√
4+
√
3

3 . To �nish, note that [P1P3P5] = 3[P1OP3] =

3
(
1
2OP1 ·OP3 · sin∠P1OP3

)
= 3

2 ·
√

4+
√
3

3

2

·
√
3
2 = 4

√
3+3
4 . This solution was provided by

franzliszt.

Problem 4. Kenan plays with three towers of blocks, each with 3 stacked vertically. A "step" is
when he adds one block to each tower, and then he removes all the blocks from one tower, chosen
at random. He performs nine steps. The chance that at the end of each step, there is no tower that
is at least 6 blocks tall can be written in the form m

3n , where m is not divisible by three. Compute
m+ n.

Solution.

Note that the �rst three steps must include all three towers being removed from exactly one
time. This has a 1 · 23 ·

1
3 = 2

9 chance of occurring. Afterwards, there are 6 steps left and towers
A,B,C have 0, 1, 2 blocks respectively.

We proceed using complementary counting by counting how many ways there are for at least
one of the towers to have 6 blocks at some point. The number of ways that tower A reaches 6
blocks is 26 = 64 since all 6 steps must choose either tower B or C . The number of ways that
tower B reaches 6 blocks is 25 · 3 = 96 since the �rst 5 steps must choose either tower A or
C , but the �nal step can choose any tower. Likewise, the number of ways tower C reaches 6
blocks is 24 · 32 = 144.

Now to account for overlap, we must �nd the ways that exactly 2 towers reach 6 blocks. The
number of ways that towers A and B reach 6 blocks is 15 · 2 = 2 since the �rst 5 steps must
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choose tower C and the �nal step can choose either tower B or C . The number of ways that
towers A and C reach 6 blocks is 14 · 22 = 4 since the �rst 4 steps must choose tower B and
the �nal 2 steps can choose either tower B or C . Likewise, the number of ways that towers B
and C reach 6 blocks is 14 · 2 · 3 = 6 since the �rst 4 steps must choose tower A, the �fth step
can choose either tower A or C , and the �nal step can choose any tower. Finally, note that it
is impossible for all 3 towers to reach 6 blocks.

Putting this all together, we have that the number of ways for at least one of the towers to
reach 6 blocks is |A|+ |B|+ |C| − |A ∩B| − |B ∩C| − |C ∩A|+ |A ∩B ∩C| = 64 + 96 +
144 − 2 − 4 − 6 + 0 = 292 by the Principle of Inclusion Exclusion. Since there are 36 = 729
ways total for the towers to be chosen, the probability that no tower reaches 6 blocks during
these 6 steps is 729−292

36
= 437

36
. This means our �nal probability is 2

9 ·
437
36

= 874
38

, so our answer
is 874 + 8 = 882 .

Problem 5. Circles A, B, C of radius 1 have centers that are pairwise 6 units apart. There is a
circle D such that A,B,C are internally tangent to D. A �fth circle, E, of radius 2 is randomly
drawn such that no part of E is outside ofD. Let LN be the distance from the center of circle E to
the center of circle N for all N ∈ {A,B,C}. Let M equal max(LA,LB ,LC ). Let P be the most
likely value of M (which is not necessarily the expected value of M .) Find bP 2c.

Solution. LetN ′ denote the center of the circleN , and de�ne circle F to be the circle externally
tangent to A,B,C - this is the circle within which E′ must lie. De�ne TX,Y as the point of
tangency of circles X,Y . Let O denote the center of the system. Finally, let 4A′B′C ′ be
oriented such that the perpendicular bisector of BC is vertical and that A is generally below
B and C . (We use generally to mean that there are some components of their separation
perpendicular to the downward direction.)

The next key step is to deal with the maximum function. If a point inside F is farther from A
than to B or C so as to make the max function equal LA, then it must be on the far side of the
perpendicular bisectors of AB and BC . Similar results hold if the maximum function is equal
to LB or LC . In other words, if we know the region delineated by the perpendicular bisectors
of4A′B′C ′ that E′ is in, we know which value to take from the max.
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SinceE′ is equally likely to be in any of the three sectors
_

OTF,ATF,B ,
_

OTF,ATF,C ,
_

OTF,BTF,C ,

let it be WLOG in the region furthest from A which is
_

OTF,BTF,C henceforth denoted I . It is
now evident that the probabilities we are dealing with are strictly in�nitesimal, and further-
more that the problem could more formally be described with a probability distribution.

E′ is equally likely to be in any location inside I . The probability that A′E′ is of a particular
length L is proportional to the length of the arc of a circle of radius L centered atA′ inside I . It
is clear that a particular length is immediately obvious, being the length of A′TF,B = A′TF,C

with associated arclength
_

TF,BTF,C . Call this arc "λ". It is visually clear that lengths less than
A′TF,B have related arcs with length less than λ. Note that in the �gure, the relevant arc is not
drawn - rather, the sector shown is I .

A handwavy argument to show that arclengths of radii greater than A′TF,B also have smaller
parts in I is presented (and can be made rigorous.)

Consider two pointsH and J equidistant fromA′ withH closer toB and J closer to C on the
boundary of I above TF,BTF,C . The arclength associated with the length A′H = A′J to be

considered is
_
HJ . We seek to show that

_
HJ <

_
TF,BTF,C

Construct two rays perpendicular to TF,BTF,C at TF,B, TF,C that are directed generally away
from A and call them λB, λC respectively. Let the projection of H onto λB be called H ′′ and
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let the projection of J onto λC be called J ′′. It is immediately clear that

_
HJ <

_

H ′′J ′′ <
_

TF,BTF,C

(where all arcs are centered at A′) - the latter inequality can be made rigorous by trig but
is intuitively a statement that circles of larger radius have less curvature spanning the same
horizontal distance and thus have less length.

Problem6. In the Cartesian plane, there is a hexagon with vertices at (−10,−10), (0,−10), (10, 0),
(10, 10), (0, 10), (−10, 0) in order. Four lattice points are randomly chosen such that each point
is in a di�erent quadrant, no point is outside the perimeter of the hexagon, and no point is on one
of the coordinate axes. Let A be the expected area of the quadrilateral formed by the points in
clockwise order. If A can be expressed as m

n with gcd(m,n) = 1, compute m+ n.

Solution.

Let (x1, y1), (x2, y2), (x3, y3), (x4, y4) be the points in counter-clockwise order with (x1, y1)
in the �rst quadrant, and let (x5, y5) = (x1, y1). By the Shoelace Formula,

A =
1

2

∣∣∣∣∣
4∑

n=1

xnyn+1 +

4∑
n=1

−xn+1yn

∣∣∣∣∣
where A is the area of the quadrilateral. Note that x1y2 is positive since x1 > 0 and y2 > 0.
Similar reasoning yields that each of the other terms is positive as well. Thus, we can rewrite
the earlier formula as

A =
1

2

(
4∑

n=1

xnyn+1 +
4∑

n=1

−xn+1yn

)
Then by linearity of expectation,

E[A] = E

[
1

2

(
4∑

n=1

xnyn+1 +
4∑

n=1

−xn+1yn

)]

=
1

2

(
4∑

n=1

E[xnyn+1] +

4∑
n=1

−E[xn+1yn]

)

=
1

2

(
4∑

n=1

E[xn]E[yn+1] +

4∑
n=1

−E[xn+1]E[yn]

)

It is easy to see that E[x1] = E[y1] = −E[x3] = −E[y3] =
11
2 and we can �nd that−E[x2] =

E[y2] = E[x4] = −E[y4] =
1
45

9∑
n=1

n(10− n) = 11
3 . Thus, E[A] = 1

2(8 ·
11
2 ·

11
3 ) =

242
3 so our

answer is 242 + 3 = 245 .

Problem 7. Find the positive integer a such that (a+ 1)! ≡ a!13 (mod 2a− 1), where 2a− 1
is a prime integer.

Solution. First, we manipulate the expression:

a+ 1 ≡ a!12 mod 2a− 1

3a ≡ a!12 mod 2a− 1
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3 ≡ (a− 1)!12a11 mod 2a− 1

We now write the expression in terms of p, a prime number, as a is not very meaningful:

3 ≡
(
p− 1

2
!

)12(p+ 1

2

)11

mod p

The crux of this problem is in the usage of Wilson’s Theorem, which is motivated by the ex-
istence of factorials mod a prime. Wilson’s theorem says that (p − 1)! ≡ −1 mod p. How-
ever, we seek p+1

2 !, and can get close with the realization that (p − 1)! can also be written as

1 · (p− 1) · 2 · (p− 2) · · · ≡ 1 · −1 · 2 · −2 · · · ≡
(
p−1
2 !
)2

(−1)
p−1
2 , so

−1 ≡
(
p− 1

2
!

)2

(−1)
p−1
2 mod p

(In fact, this is the construction used in the proof that there exists x such that x2 ≡ 1 mod p
i� p ≡ 1 mod 4.)

This trivialy reduces our expression to

3 ≡
(
p+ 1

2

)11

mod p

yielding p=6143 and a=3072 .
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